Toda lattice and generalised Wronskian technique

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 132531
(http://iopscience.iop.org/0305-4470/13/7/035)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:32

Please note that terms and conditions apply.

COMMENT

Toda lattice and generalised Wronskian technique \dagger

M Bruschi $\ddagger \S$, D Levi $\ddagger \S$ and O Ragnisco $\ddagger \|$
\ddagger Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italia § Istituto di Fisica dell'Università di Roma, 00185 Roma, Italia $\|$ Istituto di Chimica dell'Università di Sassari, Sassari, Italia

Received 11 May 1979

Abstract

By an extension of the generalised Wronskian technique we tersely reobtain the Bäcklund transformations and the class of nonlinear discrete evolution equations whose first member is the Toda lattice.

In a recent paper, Dodd (1978) derived the Bäcklund transformation and other functional relations connected to the Toda lattice by using the scattering problem satisfied by a generalisation of the 'squared eigenfunctions', following Ablowitz et al (1974). In this paper we show that by a no more complex procedure these same results can be obtained by the generalised Wronskian technique introduced by Calogero (1975).

For the basic notation and the discussion of the main results we refer to Dodd (1978).

Let us consider the scattering problem

$$
\begin{equation*}
a(n-1) u(n-1)+a(n) u(n+1)+b(n) u(n)=\lambda u(n) \tag{1}
\end{equation*}
$$

We define the Wronskian between two solutions $u(n), \bar{u}(n)$ of (1) as

$$
\begin{equation*}
W[u(n), \bar{u}(n)]=u(n+1) a(n) \bar{u}(n)-\bar{u}(n+1) a(n) u(n), \tag{2}
\end{equation*}
$$

which turns out to be independent of n.
To the same spectrum we associate two different eigenvalue problems (1), characterised by the potentials $(a(n), b(n)),\left(a^{\prime}(n), b^{\prime}(n)\right)$ and by their corresponding eigenfunctions $u(n), u^{\prime}(n)$; for these two spectral problems we define the generalised Wronskian as follows:

$$
\begin{equation*}
\tilde{W}[u(n), \tilde{u}(n)]=u(n+1) a^{\prime}(n) \tilde{u}(n)-\tilde{u}(n+1) a(n) u(n), \tag{3a}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{u}(n)=c(n) f(n) u^{\prime}(n)+c^{-1}(n-1) a^{\prime}(n) g(n) u^{\prime}(n+1), \tag{3b}
\end{equation*}
$$

$c(n)$ being defined as

$$
\begin{equation*}
c(n)=\prod_{j=-\infty}^{n} \frac{a(j)}{a^{\prime}(j)} \tag{4}
\end{equation*}
$$

and $f(n), g(n)$ being arbitrary functions of n.
\dagger The research reported in this comment has been supported in part by CNR grant N.78.00919.02.

Performing a variation of the generalised Wronskian ($3 a$) between two neighbouring lattice points and then summing from $-\infty$ to $+\infty$, we obtain

$$
\begin{align*}
{\left[u(n+1) a^{\prime}(n) c\right.} & c(n) f(n) u^{\prime}(n)-u(n) a(n) a^{-1}(n+1) a^{\prime}(n+1) \\
& \times c(n+1) f(n+1) u^{\prime}(n+1)+u(n+1) a^{\prime}(n) a(n) c^{-1}(n-1) g(n) u^{\prime}(n+1) \\
& \left.-u(n) a(n) a^{\prime}(n+1) c^{-1}(n) g(n+1) u^{\prime}(n+2)\right]_{-\infty}^{+\infty} \\
= & \lambda \sum_{n=-\infty}^{+\infty}\left\{v(n) c(n-1)[f(n)-f(n-1)]+w(n) a^{\prime}(n) c^{-1}(n-1)[g(n)-g(n+1)]\right\} \\
& -\sum_{n=-\infty}^{+\infty} \llbracket v(n)\left\{c^{-1}(n-1)\left[a^{2}(n-1) g(n-1)-a^{\prime 2}(n) g(n+1)\right]\right. \\
& \left.-c(n-1)\left[b^{\prime}(n) f(n-1)-b(n) f(n)\right]\right\} \\
& +w(n) a^{\prime}(n)\left\{c(n-1)\left[a^{2}(n) a^{\prime-2}(n) f(n+1)-f(n-1)\right]\right. \\
& \left.+c^{-1}(n-1)\left[b(n) g(n)-b^{\prime}(n+1) g(n+1)\right]\right\} \rrbracket \tag{5}
\end{align*}
$$

where, following Dodd (1978), we have set

$$
v(n)=u(n) u^{\prime}(n), \quad w(n)=u(n) u^{\prime}(n+1) .
$$

Equation (5) is the main result of the generalised Wronskian technique, and from it we are able to derive all relevant results, due to the arbitrariness of $f(n), g(n)$.

Choosing $f(n)=f, g(n)=g$ (f and g being two arbitrary constants), we obtain
$f \alpha \alpha^{\prime}\left[c(+\infty) \mathrm{i} \sin k\left(\frac{\beta}{\alpha}-\frac{\beta^{\prime}}{\alpha^{\prime}}\right)-\sum_{n=-\infty}^{+\infty}\left[v(n) c(n-1)\left(b^{\prime}(n)-b(n)\right)\right.\right.$

$$
\begin{align*}
& \left.\left.+w(n) c(n-1) a^{\prime}(n)\left(1-a^{2}(n) a^{\prime-2}(n)\right)\right]\right]+g \alpha \alpha^{\prime}\left[c^{-1}(+\infty) \mathrm{i} \sin k\right. \\
& \times\left(\frac{\beta}{\alpha} \mathrm{e}^{-\mathrm{i} k}-\frac{\beta^{\prime}}{\alpha^{\prime}} \mathrm{e}^{\mathrm{i} k}\right)-\sum_{n=-\infty}^{+\infty}\left[v(n) c^{-1}(n-1)\left(a^{\prime 2}(n)-a^{2}(n-1)\right)\right. \\
& \left.\left.+w(n) a^{\prime}(n) c^{-1}(n-1)\left(b^{\prime}(n+1)-b(n)\right)\right]\right]=0 \tag{6}
\end{align*}
$$

and by choosing $f(n)$ and $g(n)$ such that they go to zero at $+\infty$ and to a constant value at $-\infty$ we obtain

$$
\begin{align*}
& \lambda \sum_{n=-\infty}^{+\infty}[v(n) p(n)+w(n) q(n)] \\
&= \sum_{n=-\infty}^{+\infty}\left[v (n) \left(a(n-1) q(n-1)+a^{2}(n-1) a^{\prime-1}(n) q(n)+b^{\prime}(n) p(n)\right.\right. \\
&+\left(a^{2}(n-1)-a^{\prime 2}(n)\right) c^{-1}(n-1) \sum_{j=n+1}^{\infty} c(j-1) a^{\prime-1}(j) q(j) \\
&\left.+\left(b^{\prime}(n)-b(n)\right) c(n-1) \sum_{j=n+1}^{\infty} c^{-1}(j-1) p(j)\right) \\
&+w(n)\left(a^{\prime}(n) p(n)+a(n) p(n+1)+b(n) q(n)\right. \\
&\left.+\left(a^{\prime 2}\right)(n)-a^{2}(n)\right) a^{\prime-1}(n) c(n-1) \sum_{j=n+1}^{\infty} c^{-1}(j-1) p(j) \\
&\left.\left.+\left(b(n)-b^{\prime}(n+1)\right) a^{\prime}(n) c^{-1}(n-1) \sum_{j=n+1}^{\infty} c(j-1) a^{\prime-1}(j) q(j)\right)\right] \tag{7}
\end{align*}
$$

where we have defined
$p(n)=c(n-1)[f(n)-f(n-1)], \quad q(n)=c^{-1}(n-1) a^{\prime}(n)[g(n)-g(n+1)]$.
Equation (7) provides us with the exact form of the operator Λ^{+}of Dodd (1978) while from equation (6), by choosing $g=0, f=1$ and $g=1, f=0$ we obtain two different functional expressions connecting the scattering data to the potentials which are the starting point for obtaining the Bäcklund transformations and the evolution equations (Dodd 1978, equations (3.5), (2.20b)).

References

Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249-318
Calogero F 1975 Lett. Nuovo Cim. 14 537-43
Dodd R K 1978 J. Phys. A: Math. Gen. 11 81-92

